Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Radiat Oncol Biol Phys ; 101(1): 118-127, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29534895

RESUMO

PURPOSE: Radiation therapy (RT) is a viable therapeutic option for Ewing sarcoma (ES) patients. However, little progress has been made to elucidate the mechanisms of radioresistance. This study establishes a novel ES irradiation-adapted model designed to assess molecular and 18F fluorodeoxyglucose (FDG) positron emission tomography (PET) alterations secondary to RT. METHODS AND MATERIALS: Radiation-adapted cell lines (RACLs) were created in vitro by exposing ES human cell lines to fractionated doses of radiation. Assays to assess migration or invasion potential and RNA expression were performed on the RACLs. Orthotopic intratibial in vivo investigations were performed with irradiation-sensitive and irradiation-adapted ES cells to generate tumors. Transplanted mice were imaged using 18F-FDG PET followed by fractionated RT directed at the primary tumor. Mice were monitored for tumor regression and change in metabolic activity using 18F-FDG PET imaging. Protein expression analyses were performed on the RACLs and orthotopic tumors. RESULTS: Exposure to fractionated doses of radiation caused a significant increase in migratory and invasive properties in the RACLs when compared with nonirradiated wild-type ES cells. RACL transcriptomic and proteomic analysis suggests enhanced activation of the mammalian target of rapamycin-AKT pathway when compared with wild-type ES cells. Irradiation-adapted tumors demonstrated significantly less tumor regression (P = .03) than wild-type tumors. Wild-type tumors also had decreased expression of lactate dehydrogenase A protein and significantly lower metabolic activity after RT compared with irradiation-adapted tumors (P = .03). CONCLUSIONS: We developed novel in vitro and in vivo irradiation-adapted ES models. In vitro investigations revealed increased migratory and invasive phenotypes in the RACLs. In vivo investigations demonstrated increased metabolic activity and significantly decreased sensitivity to RT in the irradiation-adapted tumors as demonstrated by growth response curves and 18F-FDG PET activity. Investigations of the RACLs identified possible radiosensitizing-dependent targets in lactate dehydrogenase A and the mammalian target of rapamycin-AKT pathway.


Assuntos
Neoplasias Ósseas/radioterapia , Tolerância a Radiação , Sarcoma de Ewing/radioterapia , Adaptação Fisiológica , Animais , Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos da radiação , Fluordesoxiglucose F18 , Humanos , L-Lactato Desidrogenase/metabolismo , Camundongos , Invasividade Neoplásica , Tomografia por Emissão de Pósitrons , Proteínas Proto-Oncogênicas c-akt/metabolismo , Hipofracionamento da Dose de Radiação , Compostos Radiofarmacêuticos , Sarcoma de Ewing/diagnóstico por imagem , Sarcoma de Ewing/metabolismo , Sarcoma de Ewing/patologia , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...